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SUMMARY

In this paper we develop a discontinuous Galerkin (DG) method for solving a class of second-order
elliptic multi-scale problems. The main ingredient of this method is to use a non-polynomial multi-scale
approximation space in the DG method to capture the multi-scale solutions using coarse meshes without
resolving the fine-scale structure of the solution. We perform analysis on the approximation, stability and
error estimates, and provide numerical results to demonstrate the proposed method. Copyright q 2007
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1. INTRODUCTION

In this paper, we design a discontinuous Galerkin (DG) method based on non-polynomial basis
functions [1] for solving a class of multi-scale second-order elliptic partial differential equations

−∇ · (a�(x)∇u)= f (x) in � (1)

with the boundary condition

u = 0 on ��
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1018 L. YUAN AND C.-W. SHU

where � is a rectangular domain and the coefficient a�(x) is an oscillatory function involving a
small scale �, for example it could be a�(x)= a(x, x/�); however the force function f (x) does not
involve this small scale. A standard DG method [2, 3] using piecewise polynomial approximation
spaces can be used to solve (1); however it would require a very fine mesh to resolve the small
scale � in the solution, which might be too costly or impossible on today’s computers.

We will explore the usage of non-polynomial multi-scale approximation spaces in the DG
method, consisting of special basis functions constructed from the partial differential equations
(PDEs) to capture the micro-scale structure information of the solutions so that the solutions of
multi-scale PDEs can be well approximated even on coarse meshes. Similar approaches have been
used by Babuška et al. [4–6] and by Hou and Wu [7] for continuous finite element methods,
in which both theoretical proofs and numerical experiments were provided to show that more
accurate results can be obtained by using the multi-scale approximation spaces instead of piecewise
polynomial spaces. We extend the methodology to the DG methods, providing analysis on the
approximation, stability and error estimates, and numerical results to demonstrate the proposed
method. The DG method, comparing with the continuous finite element methods, has the advantage
of more flexibility on non-conforming meshes with hanging nodes, easier h-p adaptivity, and
more importantly easier patching of the local multi-scale approximation spaces in different cells,
especially for multi-dimensional problems, since no continuity across cell interfaces is required.

This paper is organized as follows. In Section 2, we give a brief review of the DG method for
elliptic PDEs. In Section 3, the new multi-scale approximation spaces are introduced and some
approximation results are given. In Section 4, stability and approximation properties are proven for
the DG method based on the multi-scale approximation spaces. Then, error estimates are obtained
in Section 5. In Section 6, a numerical example in one space dimension is provided to demonstrate
the performance of the DG method. Concluding remarks and plans for future work are given in
Section 7.

2. THE DISCONTINUOUS GALERKIN METHOD

In this section we give a brief review of some DG finite element methods for elliptic problems
[2, 8–10]. For the sake of simplicity, we only consider the second-order elliptic problem in 1-D:

−(a(x)ux )x = f (x), 0�x�1 (2)

where a(x)>0. We first rewrite the problem as a first-order system

−(aw)x = f, w − ux = 0 (3)

Assuming I j = (x j−1/2, x j+1/2), j = 1, . . . , N , is a partition of [0, 1], we multiply both equations
by test functions v and �, respectively, and integrate over the cell I j , followed by an integration
by parts to obtain the weak formulation:∫

I j
awvx dx − a j+1/2w j+1/2v j+1/2 + a j−1/2w j−1/2v j−1/2 =

∫
I j

f v dx (4)

∫
I j

w� dx +
∫
I j
u�x dx − u j+1/2� j+1/2 + u j−1/2� j−1/2 = 0 (5)

where, e.g. u j+1/2 = u(x j+1/2).
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The general formulation of the DG method for the elliptic problem (2) is: Find U,W ∈ Vh such
that ∫

I j
aWvx dx − a j+1/2Ŵ j+1/2v

−
j+1/2 + a j−1/2Ŵ j−1/2v

+
j−1/2 =

∫
I j

f v dx (6)

∫
I j
W� dx +

∫
I j
U�x dx − Û j+1/2�

−
j+1/2 + Û j−1/2�

+
j−1/2 = 0 (7)

for all test functions v, � ∈ Vh . Here Vh is a finite dimensional finite element space containing
functions that are discontinuous across cell interfaces, and, e.g. v−

j+1/2 = v(x−
j+1/2). For traditional

DG methods, these functions are piecewise polynomials. In this paper, we consider multi-scale
approximation spaces. Equations (6)–(7) are called the flux formulation. We can also eliminate the
auxiliary variableW from the flux formulation (6)–(7) to obtain a typical finite element formulation,
which is called the primal formulation.

There are many choices for the fluxes Û and Ŵ . Different choices will give us different DG
methods. We will just give two examples below.

First, the flux formulation of the LDG method [9–11] is: (6)–(7) with the following choice of
fluxes:

Û j+1/2 =U−
j+1/2, Ŵ j+1/2 =W+

j+1/2 + [U ] j+1/2 or

Û j+1/2 =U+
j+1/2, Ŵ j+1/2 =W−

j+1/2 + [U ] j+1/2

where [U ] =U+ − V−.
Secondly, the primal formulation of the Babuška–Zlámal method [12] is: Find U ∈ Vh such that

N∑
j=1

∫
I j
a(x)Uxvx dx +

N∑
j=0

(
a j+1/2

� j+1/2

�x
[U ] j+1/2[v] j+1/2

)
=

N∑
j=1

∫
I j

f v dx

for all test functions v ∈ Vh , where � j+1/2 is a positive constant. There is a theoretical requirement
for the lower bound �0 = inf j � j+1/2 for maintaining stability and rates of convergence of this

method: �0 ≈ �x−2k if dim Vh |I j = k + 1.
For the multi-scale problem (1), a direct numerical solution of this problem by the DG method

based on standard piecewise polynomial spaces is difficult when � is very small, even with modern
supercomputers. The reason is that piecewise polynomial spaces do not approximate well the
solution of (1) when the mesh is not refined enough. We need to use a very fine mesh in the
computation to get good numerical results, hence the computational cost will be huge.

The core idea of the DG method in this paper is to construct the finite element basis functions that
can capture the small scale information. In this DG method, the basis functions are constructed from
the elliptic differential operator, hence they are adapted to the local properties of the differential
operator in each cell. This idea of the construction of basis functions was first used by Babuška et al.
to 1-D problems [5, 6] and to a special class of 2-D problems [4], and also by Hou and Wu to some
2-D elliptic problems with rapidly oscillating coefficients [7], in the context of continuous finite
elements. For continuous finite element methods, there exists difficulty in enforcing continuity of
basis functions at the 2-D cell interfaces. However, for the DG methods, continuity at the element
interfaces is not needed, thus eliminating this difficulty.
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3. MULTI-SCALE APPROXIMATION SPACES

The multi-scale approximation spaces are constructed as below:

S1 = {� : ∇ · (a�(x)∇�)|K = 0} (8)

and

Sk ={� : ∇ · (a�(x)∇�)|K ∈ Pk−2(K )} for k�2 (9)

where K denotes the cell in the space discretization. If we define P−1(K ) ={0}, (8) can also be
denoted by (9) for k = 1.

First consider the 1-D elliptic problem

−(a�(x)ux )x = f (x), 0�x�1 (10)

with the boundary condition

u(0) = u(1)= 0 (11)

where

0<��a�(x)��< + ∞ (12)

The multi-scale approximation space (9) for this problem is explicitly given

Sk =
{

v : v|I j ∈ span

{
1,
∫ x

x j

1

a�(�)
d�,

∫ x

x j

� − x j
a�(�)

d�, . . . ,

∫ x

x j

(� − x j )k−1

a�(�)
d�

}}
(13)

where x j = 1
2 (x j−1/2 + x j+1/2). This multi-scale approximation space (13) has a very good ap-

proximation property for the solution of problem (10). This is supported by the following lemmas.

Lemma 3.1
Let u(x) be the exact solution of (10). There exists some v(x)∈ Sk(k�1) such that for all j :

|u(x) − v(x)|�C(�, �)| f |Hk−1(I j )(�x j )
k+1/2 ∀x ∈ I j (14)

where C(�, �) is a constant depending on �, � and independent of �x j and �.

Proof
The proof is inspired by the fundamental theorem of calculus:

u(x) = u(x j ) +
∫ x

x j
u′(y) dy = u(x j ) +

∫ x

x j
a�(y)u′(y) 1

a�(y)
dy

= u(x j ) +
∫ x

x j
a�(y)u′(y) d

(∫ y

x

1

a�(�)
d�

)
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= u(x j ) + a�(x j )u
′(x j )

∫ x

x j

1

a�(�)
d� −

∫ x

x j

(∫ y

x

1

a�(�)
d�

)
d(a�(y)u′(y))

= u(x j ) + a�(x j )u
′(x j )

∫ x

x j

1

a�(�)
d� −

∫ x

x j

(∫ x

y

1

a�(�)
d�

)
f (y) dy

where in the last equality we have used the differential equation (10). When k = 1, let v = u(x j )+
a�(x j )u′(x j )

∫ x
x j

(1/a�(�)) d�. It holds that v ∈ S1 and moreover

|u(x)−v(x)| =
∣∣∣∣∣−
∫ x

x j

(∫ x

y

1

a�(�)
d�

)
f (y) dy

∣∣∣∣∣�
∣∣∣∣∣
∫ x

x j

(∫ x

y

1

a�(�)
d�

)2

dy

∣∣∣∣∣
1/2∣∣∣∣∣

∫ x

x j
f 2(y) dy

∣∣∣∣∣
1/2

� 1

�
(�x j )

3/2‖ f ‖L2(I j ) (15)

for all x ∈ I j .
When k�2, we can find some p ∈ Pk−2(I j ) such that

‖ f − p‖L2(I j )�C | f |Hk−1(I j )(�x j )
k−1

Here and below C is a generic constant independent of the functions and meshes sizes. In partic-
ular, C is independent of the small parameter �. Let v = u(x j ) + a�(x j )u′(x j )

∫ x
x j

(1/a�(�)) d� −∫ x
x j

(
∫ x
y (1/a�(�)) d�)p(y) dy. We can easily verify that v ∈ Sk since

∫ x

x j

(∫ x

y

1

a�(�)
d�

)
p(y) dy =

∫ x

x j

(∫ �

x j
p(y) dy

)
1

a�(�)
d�

and
∫ �
x j

p(y) dy ∈ Pk−1(I j ). Then we can obtain

|u(x) − v(x)| =
∣∣∣∣∣−
∫ x

x j

(∫ y

x

1

a�(�)
d�

)
( f (y) − p(y)) dy

∣∣∣∣∣
�
∣∣∣∣∣
∫ x

x j

(∫ y

x

1

a�(�)
d�

)2

dy

∣∣∣∣∣
1/2 ∣∣∣∣∣

∫ x

x j
( f (y) − p(y))2 dy

∣∣∣∣∣
1/2

� 1

�
(�x j )

3/2‖ f − p‖L2(I j )�C(�, �)(�x j )
k+1/2| f |Hk−1(I j ) (16)

for all x ∈ I j .
Combining (15) and (16) will finish the proof. �

Next, we estimate the approximation rate in the L2 norm.
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Lemma 3.2
Let u(x) be the exact solution of (10) and Ph be the L2 projection operator into the space Sk .
There exists a constant C(�, �) such that

‖u − Phu‖L2(0,1)�C(�, �)| f |Hk−1(0,1)(�x)
k+1 (17)

Proof
We choose the same v as that in Lemma 3.1. Squaring both sides of (14) and then integrating in
the cell I j , we obtain, for any j ,

‖u − v‖2L2(I j )
�C(�, �)| f |2Hk−1(I j )

(�x j )
2k+2

Therefore,

‖u − Phu‖2L2(0,1) � ‖u − v‖2L2(0,1) = ∑
j

‖u − v‖2L2(I j )

�C(�, �)
∑
j

| f |2Hk−1(I j )
(�x j )

2k+2�C(�, �)| f |2Hk−1(0,1)(�x)
2k+2

Taking square roots on both sides finishes the proof. �

We now show a numerical example in Table I for the approximation to the solution of the
elliptic problem (10). We choose

f = x, a = 1

2 + x + sin(2�x/�)
(18)

with different choices of �. We can see that we obtain the optimal order of the approximation rate
(equal to the dimension of the local approximation space) when using the approximation spaces
Sk (k = 1, 2), starting from a very coarse mesh with the mesh size �x larger than �, verifying (17).
For comparison, we also list in Table I the approximation results using the regular DG space of
piecewise polynomials. We notice that we do not observe the expected order of convergence until
the mesh is refined enough relative to �, which is consistent with the approximation theory for
such regular DG space of piecewise polynomials.

We also show that the usual inverse inequality holds for the multi-scale approximation spaces.

Lemma 3.3 (Inverse Inequality)
For any �∈ Sk , we have the following inverse inequality:

‖�‖L∞(I j )�C(�x j )
−1/2‖�‖L2(I j ) (19)

for some constant C .

Proof
Only the proof for k = 1 will be given here. {1, ∫ x

x j
(1/a�(�)) d�} is a set of basis functions of the

local space S1|I j . We can transfer it to an L2 orthogonal basis {b0, b1} with

b0 = 1, b1 = 1

�x j

∫
I j

(∫ x

y

1

a�(�)
d�

)
dy
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Table I. L2-errors of the approximation to the solution of problem (10) with the choice of (18), based on
the multi-scale spaces and regular piecewise polynomials. Uniform mesh with N cells.

�= 0.1 �= 0.01

S1 space P1 space S1 space P1 space

N L2-error Order L2-error Order L2-error Order L2-error Order

10 5.58E − 04 1.46E − 03 5.92E − 04 6.67E − 04
20 1.49E − 04 1.91 2.55E − 04 2.52 1.48E − 04 2.00 1.74E − 04 1.94
40 3.71E − 05 2.01 1.54E − 04 0.73 3.73E − 05 1.99 2.21E − 04 −0.34
80 9.36E − 06 1.99 3.96E − 05 1.96 9.18E − 06 2.02 1.62E − 04 0.45

160 2.35E − 06 1.99 9.97E − 06 1.99 2.26E − 06 2.02 7.78E − 05 1.06
320 5.87E − 07 2.00 2.50E − 06 2.00 5.85E − 07 1.95 2.30E − 05 1.76

S2 space P2 space S2 space P2 space

N L2-error Order L2-error Order L2-error Order L2-error Order

10 7.82E − 06 4.61E − 04 7.94E − 06 3.51E − 05
20 1.00E − 06 2.97 2.03E − 04 1.18 9.97E − 07 2.99 1.04E − 05 1.75
40 1.26E − 07 2.99 2.02E − 05 3.33 1.27E − 07 2.97 2.18E − 04 −4.39
80 1.60E − 08 2.98 2.58E − 06 2.97 1.51E − 08 3.07 1.21E − 04 0.85

160 2.00E − 09 3.00 3.24E − 07 2.99 1.87E − 09 3.01 2.68E − 05 2.17
320 2.51E − 10 2.99 4.06E − 08 3.00 2.44E − 10 2.97 3.84E − 06 2.80

First we prove that for each i , bi satisfy the inverse inequality (19). The proof is trivial for i = 0.
For i = 1, we have

|b1| = 1

�x j

∣∣∣∣∣
∫
I j

(∫ x

y

1

a�(�)
d�

)
dy

∣∣∣∣∣� 1

�x j

∫
I j

∣∣∣∣
∫ x

y

1

a�(�)
d�

∣∣∣∣ dy� 1

��x j

∫
I j

|x − y| dy��x j
�

that is

‖b1‖L∞(I j )�
�x j
�

(20)

From symmetry, we have

∫
I j

(∫
I j

(∫ x

y

1

a�(�)
d�

)
dy

)
dx = 0

Hence there exists some x0 ∈ I j such that

∫
I j

(∫ x0

y

1

a�(�)
d�

)
dy = 0
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We claim that for x>x0,
∫
I j

(
∫ x
y (1/a�(�)) d�) dy>0, since

∫
I j

(∫ x

y

1

a�(�)
d�

)
dy =

∫
I j

(∫ x

x0

1

a�(�)
d� +

∫ x0

y

1

a�(�)
d�

)
dy =

∫
I j

(∫ x

x0

1

a�(�)
d�

)
dy>0

Similarly, for x<x0, we have
∫
I j

(
∫ x
y (1/a�(�)) d�) dy<0.

Without the loss of generality, we may assume x0�x j . We then have

(�x j )
2‖b1‖2L2(I j )

=
∫
I j

(∫
I j

(∫ x

y

1

a�(�)
d�

)
dy

)2

dx

�
∫ x j+�x j/2

x0

(∫
I j

(∫ x

y

1

a�(�)
d�

)
dy

)2

dx

� 1

x j + �x j
2

− x0

(∫ x j+�x j/2

x0

(∫
I j

(∫ x

y

1

a�(�)
d�

)
dy

)
dx

)2

� 1

�x j

(∫ x j+�x j /2

x0

(∫
I j

(∫ x

x0

1

a�(�)
d�

)
dy

)
dx

)2

� 1

�x j

(∫ x j+�x j /2

x0

�x j
�

(x − x0) dx

)2

� (�x j )5

64�2

That is, we have

‖b1‖L2(I j )�
(�x j )3/2

8�
(21)

Combining the two inequalities (20) and (21), we obtain

‖b1‖L∞(I j )�C(�x j )
−1/2‖b1‖L2(I j )

For any �∈ S1, we can write �= c0b0 + c1b1, and we have

‖�‖2L∞(I j ) � 2c20‖b0‖2L∞(I j ) + 2c21‖b1‖2L∞(I j )�C(�x j )
−1/2(c20‖b0‖2L2(I j )

+ c21‖b1‖2L2(I j )
)

=C(�x j )
−1/2‖�‖2L2(I j )

Now the proof is complete for k = 1. �

We now consider a special 2-D elliptic multi-scale problem

−(a�(x)ux )x − (b�(y)uy)y = f (x, y), (x, y)∈ � (22)
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with the boundary condition

u(x, y)= 0, (x, y)∈ ��

where

0<��a�(x), b�(y)��< + ∞ (23)

We propose a 2-D multi-scale approximation space for this 2-D elliptic problem to be

Sk2 =
{
v : v|K ∈ span

{
1,
∫ x

xK

1

a�(�)
d�,

∫ y

yK

1

b�(�)
d�,

∫ x

xK

� − xK
a�(�)

d�,

∫ x

xK

1

a�(�)
d�
∫ y

yK

1

b�(�)
d�,

∫ y

yK

� − yK
b�(�)

d�, . . . ,

∫ x

xK

(� − xK )k−1

a�(�)
d�,

∫ x

xK

(� − xK )k−2

a�(�)
d�
∫ y

yK

1

b�(�)
d�, . . . ,

∫ x

xK

1

a�(�)
d�
∫ y

yK

(� − yK )k−2

b�(�)
d�,

∫ y

yK

(� − yK )k−1

b�(�)
d�

}}

Here K is a 2-D cell with the barycenter at the point (xK , yK ).
In the following lemma we will prove the approximation property for S12 .

Lemma 3.4
Let u(x, y) be the exact solution of (22). There exists some v(x, y)∈ S12 such that for all cell K :

‖u − v‖L2(K )�C(�, �)‖ f ‖L2(K )(�K )2 ∀(x, y) ∈ K (24)

where �K = diam(K ) and C(�, �) is a constant depending on �, � and independent of �K and �.

Proof
This lemma is a generalization of the theorems in [4] and so is the procedure of its proof. We
define x̃ = ∫ x

xK
(1/a�(�)) d�, ỹ = ∫ y

yK
(1/b�(�)) d�, ũ(x̃, ỹ) = u(x, y), ã�(x̃) = a�(x), b̃�(ỹ) = b�(y),

and f̃ (x̃, ỹ) = f (x, y). Change the variables x and y in (22) to x̃ and ỹ, we obtain a new elliptic
PDE:

−b̃�ũ x̃ x̃ − ã�ũ ỹ ỹ = ã�b̃� f̃ , (x̃, ỹ) ∈ K̃ (25)

From the Bernstein Theorem in [4], we have

‖ũ‖H2(K̃ )
�C(�, �)‖ã�b̃� f̃ ‖L2(K̃ )

�C(�, �)‖ f ‖L2(K )

From the approximation theory of polynomial spaces, we can find a linear polynomial ṽ = c0 +
c1 x̃ + c2 ỹ such that

‖ũ − ṽ‖L2(K̃ )
�C‖ũ‖H2(K̃ )

(�K̃ )2
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Now we denote v(x, y) = ṽ(x̃, ỹ) = c0 + c1
∫ x
xK

(1/a�(�)) d�+ c2
∫ y
yK

(1/b�(�)) d�. We also have
�K̃�C�K . The approximation property can then be obtained:

‖u − v‖L2(K )�C(�, �)‖ũ − ṽ‖L2(K̃ )
�C(�, �)‖ũ‖H2(K̃ )

(�K̃ )2�C(�, �)‖ f ‖L2(K )(�K )2

This completes the proof. �

Next, we will prove the L2 approximation property for S12 .

Lemma 3.5
Let u(x, y) be the exact solution of (22) and Ph be the L2 projection operator into the space S12 .
There exists a constant C(�, �) such that

‖u − Phu‖L2(�)�C(�, �)‖ f ‖L2(�)�
2 (26)

where � = maxK �K .

Proof
We choose the same v as that in Lemma 3.4. Squaring both sides of (24), we obtain

‖u − v‖2L2(K )
�C(�, �)‖ f ‖2L2(K )

(�K )4 ∀K
Therefore,

‖u − Phu‖2L2(�)
�‖u − v‖2L2(�)

�C(�, �)
∑
K

‖ f ‖2L2(K )
(�K )4�C(�, �)‖ f ‖2L2(�)

�4

Taking square roots on both sides finishes the proof. �

4. BOUNDEDNESS AND STABILITY OF THE MULTI-SCALE DG OPERATOR,
AND APPROXIMATION PROPERTIES

Here we denote the primal form Bh(·, ·) as the left-hand side of the primal formulation of the DG
method. In this section, we discuss the boundedness and stability of Bh and the approximation
properties of the space Sk with respect to some appropriate norm. For simplicity, we will only
provide the proof for the Babuška–Zlámal DG method in 1-D following the proof in [8]. The proof
can also be easily generalized to other DG methods and to 2-D along the lines of [8].

4.1. Boundedness

Lemma 4.1 (Boundedness)
There exists some constant Cb such that

Bh(w, v)�Cb|||w||| |||v||| ∀w, v ∈ Sk (27)

where the norm ||| · ||| is defined as

|||v|||2 = |v|2H1(0,1) + |v|2∗
Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1017–1032
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with the norm | · |∗ defined as

|v|2∗ =
N∑
j=0

(�x)−2k−1[v]2j+1/2

Proof
For the Babuška–Zlámal method, we have

Bh(w, v) =
N∑
j=1

∫
I j
a�wxvx dx +

N∑
j=0

(
a�(x j+1/2)� j+1/2

�x
[w] j+1/2[v] j+1/2

)

From (12), we can easily obtain

N∑
j=1

∫
I j
a�wxvx dx�C |w|H1(0,1)|v|H1(0,1) (28)

for some constant C . We also have

N∑
j=0

(
a�(x j+1/2)� j+1/2

�x
[w] j+1/2[v] j+1/2

)
�C1(�x)

2k

(
sup
j

� j+1/2

)
|w|∗|v|∗ (29)

for some constant C1. Combining (28) and (29) and noticing that (�x)2k(sup j � j+1/2) = O(1)
complete the proof. �

4.2. Stability

Lemma 4.2 (Stability)
There exists some constant Cs such that

Bh(v, v)�Cs |||v|||2 ∀v ∈ Sk (30)

Proof
From (12), we can easily obtain

N∑
j=1

∫
I j
a�vxvx dx�C |v|2H1(0,1) (31)

for some constant C . We also have

N∑
j=0

(
a�(x j+1/2)� j+1/2

�x
[v] j+1/2[v] j+1/2

)
�C1(�x)

2k
(
inf
j

� j+1/2

)
|v|2∗ (32)

for some constant C1. The combination of (31) and (32) gives us (30). To make Cs independent
of �x , the lower bound of � j+1/2 must be sufficiently large, i.e. inf j � j+1/2 =O((�x)−2k). �

4.3. Approximation

Lemma 4.3 (Approximation)
Let u(x) be the exact solution of (10). There exists some interpolant uI (x)∈ Sk (k�1) such that

|||u − uI |||�Ca(�x)
k | f |Hk−1(0,1) (33)
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Proof
We choose uI as the usual continuous interpolant, then the jumps of u − uI will vanish on the
boundaries. We also have |u − uI |H1(0,1)�C(�x)k | f |Hk−1(0,1), proven in [5]. Then

|||u − uI ||| = |u − uI |H1(0,1)�C(�x)k | f |Hk−1(0,1)

The proof is completed. �

5. ERROR ESTIMATES

We now prove an error estimate for the DG method based on the multi-scale approximation
spaces by using the properties of consistency, boundedness, stability, and approximation discussed
previously. Again, only the results for the Babuška–Zlámal DG method are provided.

Lemma 5.1 (Error estimates)
Let u(x) be the exact solution of (10) and uh be the numerical solution computed by the multi-scale
Babuška–Zlámal DG method. There exists some constant C independent of � such that

‖u − uh‖L2(0,1)�C(�x)k+1| f |Hk−1(0,1) (34)

Proof
The proof here mainly follows the lines in [8]. The Babuška–Zlámal DG method is not consistent.
Instead of satisfying the consistency condition, it satisfies

Bh(u, v)=
∫ 1

0
f v dx +

N∑
j=0

a�(x j+1/2){ux } j+1/2[v] j+1/2 ∀v|I j ∈ H2(I j ) ∀ j (35)

where u is the exact solution of (10) and {w} = 1
2 (w

− + w+).
This method is neither adjoint consistent. We also have

Bh(v,	) =
∫ 1

0
vg dx +

N∑
j=0

a�(x j+1/2)[v] j+1/2{	x } j+1/2 ∀v|I j ∈ H2(I j ) ∀ j

where 	 is the exact solution of the adjoint problem of (10), which is

−(a�(x)	x )x = g(x), 0�x�1 (36)

with the boundary condition

	(0) = 	(1) = 0 (37)

From the stability of the Babuška–Zlámal method, we obtain

Cs |||uI − uh |||2�Bh(uI − u, uI − uh) + Bh(u − uh, uI − uh) =: T1 + T2 (38)

Since uI is the continuous interpolant of u in Sk , we can use the continuity of u − uI to
estimate T1:

T1�C |||uI − u||| |||uI − uh |||�C(�x)k |||uI − uh ||| | f |Hk−1(0,1) (39)
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We also have

T2 =
N∑
j=0

a�(x j+1/2){ux } j+1/2[uI − uh] j+1/2

�C(�x)k |||uI − uh ||| ‖u‖H2(0,1)�C(�x)k |||uI − uh ||| ‖ f ‖L2(0,1) (40)

where the second inequality comes from the regularity of the elliptic PDE (10) and the first
inequality is estimated by using the auxiliary inequality

N∑
j=0

a�(x j+1/2){ux } j+1/2[v] j+1/2 =
N∑
j=0

a�(x j+1/2)(�x)
k+1/2{ux } j+1/2[v] j+1/2(�x)

−k−1/2

�C |||v|||
(

N∑
j=0

(�x)2k+1{ux }2j+1/2

)1/2

�C(�x)k |||v||| ‖u‖H2(0,1) (41)

with the last step following from the trace inequality which is proven in [2].
Substituting (39) and (40) back into (38), we get

|||uI − uh |||�C(�x)k‖ f ‖Hk−1(0,1)

and

|||u − uh |||�C(�x)k‖ f ‖Hk−1(0,1)

by the triangle inequality.
For the L2-error estimate, we use (36) with g= u − uh to obtain

‖u − uh‖2L2(0,1) = Bh(u − uh,	) −
N∑
j=0

a�(x j+1/2){	x } j+1/2[u − uh] j+1/2 =: T3 + T4 (42)

Let 	I be the continuous interpolant of 	 in Sk , then Bh(u, 	I ) = ∫ 1
0 f 	I dx . Therefore,

T3 = Bh(u − uh,	 − 	I )�C |||u − uh ||| |||	 − 	I |||�C�x |||u − uh ||| ‖u − uh‖L2(0,1) (43)

where for the last inequality we have used Lemma 4.3 with u replaced by 	.
The term T4 can be estimated by using the auxiliary inequality (41):

T4�C(�x)k |||u − uh ||| ‖	‖H2(0,1)�C(�x)k |||u − uh ||| ‖u − uh‖L2(0,1) (44)
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Substituting (43) and (44) back into (42), we get

‖u − uh‖L2(0,1)�C(�x)k+1‖ f ‖Hk−1(0,1)

which finishes the proof. �

6. A NUMERICAL EXAMPLE

In this section, we present a numerical example of using the Babuška–Zlámal DG method based
on the proposed multi-scale approximation spaces for solving the elliptic multi-scale problem (10)
with

f = x, a = 1

2 + x + sin(2�x/�)
(45)

with �= 0.1 and 0.01, respectively. We take � j+1/2 = �x−2k in the computation. The numerical
results are shown in Table II. We can clearly observe that the solutions are numerically well
resolved and the expected (k + 1)th order of accuracy is achieved starting from �x larger than
�, without any resonance effects when the mesh size �x changes from larger than � to smaller
than �. Our numerical implementation does show an amplification of the round-off errors to around
the level at 10−7 in double precision, probably due to the large condition number of the mass
matrix. We will explore more accurate implementation of the method in the future. For comparison,

Table II. L2-errors for the Babuška–Zlámal DG method based on multi-scale approximation spaces and
regular piecewise polynomials. N uniform cells.

�= 0.1 �= 0.01

S1 space P1 space S1 space P1 space

N L2-error Order L2-error Order L2-error Order L2-error Order

10 9.36E − 04 8.37E − 03 7.06E − 04 9.46E − 03
20 2.37E − 04 1.98 1.87E − 03 2.16 1.72E − 04 2.00 9.82E − 03 −0.05
40 6.12E − 05 1.95 1.91E − 03 −0.03 4.40E − 05 1.97 9.71E − 03 0.02
80 1.57E − 05 1.96 5.03E − 04 1.92 1.13E − 05 1.97 9.72E − 03 0.00

160 3.96E − 06 1.99 1.28E − 04 1.97 2.59E − 06 2.06 7.75E − 03 0.33
320 9.92E − 07 2.00 3.21E − 05 2.00 7.13E − 07 1.93 2.80E − 03 1.47
640 2.48E − 07 2.00 8.02E − 06 2.00 1.85E − 07 1.94 7.74E − 04 1.86

1280 1.17E − 07 1.08 1.87E − 07 2.10 1.19E − 07 0.45 1.99E − 04 1.96

S2 space P2 space S2 space P2 space

N L2-error Order L2-error Order L2-error Order L2-error Order

5 3.20E − 04 8.38E − 03 3.20E − 04 9.73E − 03
10 2.08E − 05 3.94 3.94E − 03 1.09 2.08E − 05 3.94 9.96E − 03 −0.03
20 2.00E − 06 3.38 1.91E − 03 1.04 1.98E − 06 3.39 9.80E − 03 0.02
40 2.35E − 07 3.09 9.03E − 05 4.40 2.33E − 07 3.09 9.73E − 03 0.01
80 3.76E − 08 2.64 7.40E − 06 3.61 7.27E − 08 1.68 9.17E − 03 0.09
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we also list in Table II the results using the Babuška–Zlámal DG method based on the DG space
of piecewise polynomials. We notice that we do not observe the expected order of convergence
until the mesh is refined enough relative to �, which is consistent with the error estimates for such
DG method based on regular piecewise polynomials.

7. CONCLUDING REMARKS

DG methods based on multi-scale approximation spaces for solving a class of second-order elliptic
PDEs with multi-scale solutions are studied in this paper. The basis functions of the multi-
scale approximation spaces are constructed from the differential operators to capture the micro-
scale structure information of solutions so that the solutions of multi-scale PDEs can be well
approximated. The resulting method can be shown to achieve the designed convergence rate,
based on the regularity of the right-hand side of the PDE (1) which is independent of �, not on
the regularity of the actual solution of this PDE which depends on �. Both theoretical proofs and
numerical experiments show that, compared with the usual piecewise polynomial spaces, more
accurate results are obtained for coarse meshes. No resonance effects appear, that is, the rate of
convergence is independent of �. Even though the theory and numerical results are shown for the
Babuška–Zlámal DG method only, the proposed multi-scale DG methodology is not restricted to
any specific DG formulation.

From a practical point of view, we have only considered the 1-D problem and a special class
of 2-D problems for which the multi-scale basis functions can be explicitly constructed. This
renders the DG scheme very efficient, with a cost comparable with that of the regular DG scheme
with polynomial basis functions. The method also works for more general multi-dimensional
problems; however, the multi-scale basis functions may not be available explicitly and must also
be computed numerically [7], which would increase the computational cost of the multi-scale DG
method tremendously.

In future work we will generalize both the multi-scale DG method and its analysis to broader
classes of multi-dimensional problems with higher order of accuracy. We will also explore appli-
cations of the multi-scale DG method in fluid dynamics and semi-conductor device simulations.
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